28 research outputs found

    Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction

    Full text link
    Navigating in search and rescue environments is challenging, since a variety of terrains has to be considered. Hybrid driving-stepping locomotion, as provided by our robot Momaro, is a promising approach. Similar to other locomotion methods, it incorporates many degrees of freedom---offering high flexibility but making planning computationally expensive for larger environments. We propose a navigation planning method, which unifies different levels of representation in a single planner. In the vicinity of the robot, it provides plans with a fine resolution and a high robot state dimensionality. With increasing distance from the robot, plans become coarser and the robot state dimensionality decreases. We compensate this loss of information by enriching coarser representations with additional semantics. Experiments show that the proposed planner provides plans for large, challenging scenarios in feasible time.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 201

    Value Iteration Networks on Multiple Levels of Abstraction

    Full text link
    Learning-based methods are promising to plan robot motion without performing extensive search, which is needed by many non-learning approaches. Recently, Value Iteration Networks (VINs) received much interest since---in contrast to standard CNN-based architectures---they learn goal-directed behaviors which generalize well to unseen domains. However, VINs are restricted to small and low-dimensional domains, limiting their applicability to real-world planning problems. To address this issue, we propose to extend VINs to representations with multiple levels of abstraction. While the vicinity of the robot is represented in sufficient detail, the representation gets spatially coarser with increasing distance from the robot. The information loss caused by the decreasing resolution is compensated by increasing the number of features representing a cell. We show that our approach is capable of solving significantly larger 2D grid world planning tasks than the original VIN implementation. In contrast to a multiresolution coarse-to-fine VIN implementation which does not employ additional descriptive features, our approach is capable of solving challenging environments, which demonstrates that the proposed method learns to encode useful information in the additional features. As an application for solving real-world planning tasks, we successfully employ our method to plan omnidirectional driving for a search-and-rescue robot in cluttered terrain

    Planning Hybrid Driving-Stepping Locomotion for Ground Robots in Challenging Environments

    Get PDF
    Ground robots capable of navigating a wide range of terrains are needed in several domains such as disaster response or planetary exploration. Hybrid driving-stepping locomotion is promising since it combines the complementary strengths of the two locomotion modes. However, suitable platforms require complex kinematic capabilities which need to be considered in corresponding locomotion planning methods. High terrain complexities induce further challenges for the planning problem. We present a search-based hybrid driving-stepping locomotion planning approach for robots which possess a quadrupedal base with legs ending in steerable wheels allowing for omnidirectional driving and stepping. Driving is preferred on sufficiently flat terrain while stepping is considered in the vicinity of obstacles. Steps are handled in a hierarchical manner: while only the connection between suitable footholds is considered during planning, those steps in the resulting path are expanded to detailed motion sequences considering the robot stability. To enable precise locomotion in challenging terrain, the planner takes the individual robot footprint into account. The method is evaluated in simulation and in real-world applications with the robots Momaro and Centauro. The results indicate that the planner provides bounded sub-optimal paths in feasible time. However, the required fine resolution and high-dimensional robot representation result in too large state spaces for more complex scenarios exceeding computation time and memory constraints. To enable the planner to be applicable in those scenarios, the method is extended to incorporate three levels of representation. In the vicinity of the robot, the detailed representation is used to obtain reliable paths for the near future. With increasing distance from the robot, the resolution gets coarser and the degrees of freedom of the robot representation decrease. To compensate this loss of information, those representations are enriched with additional semantics increasing the scene understanding. We further present how the most abstract representation can be used to generate an informed heuristic. Evaluation shows that planning is accelerated by multiple orders of magnitude with comparable result quality. However, manually designing the additional representations and tuning the corresponding cost functions requires a high effort. Therefore, we present a method to support the generation of an abstract representation through a convolutional neural network (CNN). While a low-dimensional, coarse robot representation and corresponding action set can be easily defined, a CNN is trained on artificially generated data to represent the abstract cost function. Subsequently, the abstract representation can be used to generate a similar informed heuristic, as described above. The CNN evaluation on multiple data sets indicates that the learned cost function generalizes well to realworld scenes and that the abstraction quality outperforms the manually tuned approach. Applied to hybrid driving-stepping locomotion planning, the heuristic achieves similar performance while design and tuning efforts are minimized. Since a learning-based method turned out to be beneficial to support the search-based planner, we finally investigate if the whole planning problem can be solved by a learning-based approach. Value Iteration Networks (VINs) are known to show good generalizability and goal-directed behavior, while being limited to small state spaces. Inspired by the above-described results, we extend VINs to incorporate multiple levels of abstraction to represent larger planning problems with suitable state space sizes. Experiments in 2D grid worlds show that this extension enables VINs to solve significantly larger planning tasks. We further apply the method to omnidirectional driving of the Centauro robot in cluttered environments which indicates limitations but also emphasizes the future potential of learning-based planning methods.Planung von Hybrider Fahr-Lauf-Lokomotion fĂŒr Bodenroboter in Anspruchsvollen Umgebungen Bodenroboter, welche eine Vielzahl von UntergrĂŒnden ĂŒberwinden können, werden in vielen Anwendungsgebieten benötigt. Beispielszenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fortbewegung vielversprechend, da sie die sich ergĂ€nzenden StĂ€rken der beiden Fortbewegungsarten miteinander vereint. Um dies zu realisieren benötigen entsprechende Roboter allerdings komplexe kinematische FĂ€higkeiten, welche auch in adĂ€quaten AnsĂ€tzen fĂŒr die Planung dieser Fortbewegung berĂŒcksichtigt werden mĂŒssen. Anspruchsvolle Umgebungen mit komplexen UntergrĂŒnden erhöhen dabei zusĂ€tzlich die Anforderungen an die Bewegungsplanung. In dieser Arbeit wird ein suchbasierter Ansatz fĂŒr kombinierte Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Zielplattformen sind vierbeinige Roboter, deren Beine in lenkbaren RĂ€dern enden, so dass sie omnidirektional fahren und laufen können. Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt, wĂ€hrend der Planer Laufmanöver in der NĂ€he von Hindernissen in ErwĂ€gung zieht. Schritte werden dabei in einer hierarchischen Art undWeise realisiert: WĂ€hrend des Planens werden nur Verbindungen zwischen geeigneten AuftrittsflĂ€chen gesucht. Nur solche Schritte, die im Ergebnispfad enthalten sind, werden anschließend zu detaillierten BewegungsablĂ€ufen verfeinert, welche die Balance des Roboters sicherstellen. Um prĂ€zise Fortbewegung in anspruchsvollen Umgebungen zu ermöglichen, betrachtet der Planer die spezifischen AufstandsflĂ€chen der vier FĂŒĂŸe. Der Ansatz wurde sowohl in simulierten als auch in realen Tests mit den Robotern Momaro und Centauro evaluiert, wobei der Planer in der Lage war, Lösungspfade von ausreichender QualitĂ€t in zulĂ€ssiger Zeit zu generieren. Allerdings ergeben die benötigte feine Planungsauflösung und die hochdimensionale RoboterreprĂ€sentation große ZustandsrĂ€umen. Diese wĂŒrden fĂŒr komplexere oder grĂ¶ĂŸere Planungsprobleme die zulĂ€ssige Rechenzeit und den verfĂŒgbaren Speicher ĂŒberschreiten. Damit der Planer auch eben diese komplexeren oder grĂ¶ĂŸeren Planungsprobleme handhaben kann, wird eine Erweiterung des Ansatzes beschrieben, welche mehrere ReprĂ€sentationslevel mit einbezieht. In unmittelbarer Umgebung des Roboters wird die zuvor beschriebene detaillierte ReprĂ€sentation genutzt, um hochwertige Pfade fĂŒr die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Roboter wird die Auflösung gröber und die Anzahl der Freiheitsgrade in der RoboterreprĂ€sentation sinkt. Um den mit dieser Vergröberung einhergehenden Informationsverlust zu kompensieren, werden diese ReprĂ€sentationen mit zusĂ€tzlicher Semantik ausgestattet, welche das SzenenverstĂ€ndnis erhöht. DarĂŒber hinaus wird beschrieben, wie die ReprĂ€sentation mit dem höchsten Abstraktionsgrad zur Berechnung einer effektiven Heuristik genutzt werden kann. Die Evaluation in Simulationsumgebungen zeigt, dass der Planungsprozess um mehrere GrĂ¶ĂŸenordnungen beschleunigt werden kann, wĂ€hrend die ErgebnisqualitĂ€t vergleichbar bleibt. Allerdings sind das manuelle Gestalten der zusĂ€tzlichen ReprĂ€sentationen und das dazugehörige Parametrisieren der Kostenfunktionen sehr arbeitsintensiv. Um diesen Aufwand zu reduzieren, wird daher eine Methode beschrieben, welche die Gestaltung einer abstrakten ReprĂ€sentation durch ein Convolutional Neural Network (CNN) unterstĂŒtzt. WĂ€hrend eine grobe, niedrigdimensionale RoboterreprĂ€sentation und ein dazugehöriges Aktionsset einfach definiert werden können, wird ein CNN auf kĂŒnstlich erzeugten Daten trainiert, um die abstrakte Kostenfunktion zu lernen. Anschließend kann die so erzeugte abstrakte ReprĂ€sentation genutzt werden, um die bereits zuvor erwĂ€hnte effektive Heuristik zu berechnen. In der Evaluation des CNNs auf verschiedenen DatensĂ€tzen zeigt sich, dass die gelernte Kostenfunktion auch mit Daten aus realen Umgebungen funktioniert und dass die generelle ErgebnisqualitĂ€t oberhalb der Ergebnisse mit manuell erzeugten ReprĂ€sentationen liegt. Die Anwendnung der Methode zur Planung hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heuristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell erzeugter ReprĂ€sentation liefert, wĂ€hrend der Aufwand zur Gestaltung und Parametrisierung deutlich verringert wurde. Da sich gezeigt hat, dass eine lernbasierte Methode den klassischen suchbasierten Ansatz effektiv unterstĂŒtzen kann, wird in dieser Arbeit abschließend untersucht, ob das gesamte Planungsproblem durch eine lernbasierte Methode gelöst werden kann. Value Iteration Networks (VINs) sind in diesem Zusammenhang ein vielversprechender Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsverhalten lernen und das Gelernte auf unbekannte Situationen verallgemeinern können. Allerdings ist ihre bisherige Anwendung auf kleine ZustandsrĂ€ume begrenzt. Durch die zuvor beschriebenen Ergebnisse motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese auf verschiedenen Abstraktionsleveln planen, um grĂ¶ĂŸere Planungsprobleme in ZustandsrĂ€umen entsprechender GrĂ¶ĂŸe darzustellen. Experimente in 2D-Rasterumgebungen zeigen, dass die beschriebene Methode VINs in die Lage versetzt, deutlich grĂ¶ĂŸere Planungsprobleme zu lösen. DarĂŒber hinaus wird die beschriebene Methode benutzt, um omnidirektionale Fahrmanöver fĂŒr den Centauro-Roboter in anspruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber auch die momentanen, hardware-bedingten Grenzen rein lernbasierter AnsĂ€tze sowie ihr zukĂŒnftiges Potential aufgezeigt

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures

    Get PDF
    Attempts to prepare the hitherto unknown Se6 2+ cation by the reaction of elemental selenium and Ag[A] ([A]- = [Sb(OTeF5)6]-, [Al(OC(CF3)3)4]-) in SO2 led to the formation of [(OSO)Ag(Se6)Ag(OSO)][Sb(OTeF5)6]2 1 and [(OSO)2Ag(Se6)Ag(OSO)2][Al(OC(CF3)3)4]2 2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO2) was accessible from Ag[Al(OC(CF3)3)4] and grey Se in SO2 (chem. analysis). The reactions of Ag[MF6] (M= As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se6)]∞[Ag2(SbF6)3]∞} 3 and {1/∞[Ag(Se6)Ag]∞}[AsF6]2 4. Pure bulk 4 was best prepared by the reaction of Se4[AsF6]2, silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1–4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR pectroscopy. Application of the PRESTO III sequence allowed for the first time 109Ag MAS NMR investigations of 4 as well as AgF, AgF2, AgMF6 and {1/∞[Ag(I2)]∞}[MF6] (M= As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se6)Ag]2+ heterocubane units consisting of a Se6 molecule bicapped by two silver cations (local D3d sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se6 rings with Ag+ residing in octahedral holes. Each Ag+ ion coordinates to three selenium atoms of each adjacent Se6 ring. 4 contains [Ag(Se6)+]∞ stacks additionally linked by Ag(2)+ into a two dimensional network. 3 features a remarkable 3-dimensional [Ag2(SbF6)3]- anion held together by strong Sb–F 
 Ag contacts between the component Ag+ and [SbF6]- ions. The hexagonal channels formed by the [Ag2(SbF6)3]- anions are filled by stacks of [Ag(Se6)+]∞ cations. Overall 1–4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se6 molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born–Fajans–Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se6 molecule from grey selenium is thermodynamically driven by the coordination to the Ag+ ions
    corecore